Ordinal regression based on learning vector quantization

نویسندگان

  • Fengzhen Tang
  • Peter Tiño
چکیده

Recently, ordinal regression, which predicts categories of ordinal scale, has received considerable attention. In this paper, we propose a new approach to solve ordinal regression problems within the learning vector quantization framework. It extends the previous approach termed ordinal generalized matrix learning vector quantization with a more suitable and natural cost function, leading to more intuitive parameter update rules. Moreover, in our approach the bandwidth of the prototype weights is automatically adapted. Empirical investigation on a number of datasets reveals that overall the proposed approach tends to have superior out-of-sample performance, when compared to alternative ordinal regression methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Metric Learning Vector Quantization for Ordinal Classification

Many pattern analysis problems require classification of examples into naturally ordered classes. In such cases, nominal classification schemes will ignore the class order relationships, which can have a detrimental effect on classification accuracy. This article introduces two novel ordinal learning vector quantization (LVQ) schemes, with metric learning, specifically designed for classifying ...

متن کامل

Metric learning for incorporating privileged information in prototype-based models

Prototype-based classification models, and particularly Learning Vector Quantization (LVQ) frameworks with adaptive metrics, are powerful supervised classification techniques with good generalization behaviour. This thesis proposes three advanced learning methodologies, in the context of LVQ, aiming at better classification performance under various classification settings. The first contributi...

متن کامل

Support Vector Learning for Ordinal Regression

We investigate the problem of predicting variables of ordinal scale. This taks is referred to as ordinal regression and is complementary to the standard machine learning tasks of classification and metric regression. In contrast to statistical models we present a distribution independent formulation of the problem together with uniform bounds of the risk functional. The approach presented is ba...

متن کامل

Gaussian Processes for Ordinal Regression

We present a probabilistic kernel approach to ordinal regression based on Gaussian processes. A threshold model that generalizes the probit function is used as the likelihood function for ordinal variables. Two inference techniques, based on the Laplace approximation and the expectation propagation algorithm respectively, are derived for hyperparameter learning and model selection. We compare t...

متن کامل

Regression Models for Ordinal Data : AMachine Learning

In contrast to the standard machine learning tasks of classi cation and metric regression we investigate the problem of predicting variables of ordinal scale, a setting referred to as ordinal regression. The task of ordinal regression arises frequently in the social sciences and in information retrieval where human preferences play a major role. Also many multi{class problems are really problem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 93  شماره 

صفحات  -

تاریخ انتشار 2017